Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Braz. dent. j ; 26(2): 105-109, Mar-Apr/2015. tab, graf
Article in English | LILACS | ID: lil-741217

ABSTRACT

Dried, fresh and glycolic extracts of Zingiber officinale were obtained to evaluate the action against G. mellonella survival assay against Enterococcus faecalis infection. Eighty larvae were divided into: 1) E. faecalis suspension (control); 2) E. faecalis + fresh extract of Z. officinale (FEO); 3) E. faecalis + dried extract of Z. officinale (DEO); 4) E. faecalis + glycolic extract of Z. officinale (GEO); 5) Phosphate buffered saline (PBS). For control group, a 5 μL inoculum of standardized suspension (107 cells/mL) of E. faecalis (ATCC 29212) was injected into the last left proleg of each larva. For the treatment groups, after E. faecalis inoculation, the extracts were also injected, but into the last right proleg. The larvae were stored at 37 °C and the number of dead larvae was recorded daily for 168 h (7 days) to analyze the survival curve. The larvae were considered dead when they did not show any movement after touching. E. faecalis infection led to the death of 85% of the larvae after 168 h. Notwithstanding, in treatment groups with association of extracts, there was an increase in the survival rates of 50% (GEO), 61% (FEO) and 66% (DEO) of the larvae. In all treatment groups, the larvae exhibited a survival increase with statistically significant difference in relation to control group (p=0.0029). There were no statistically significant differences among treatment groups with different extracts (p=0.3859). It may be concluded that the tested extracts showed antimicrobial activity against E. faecalis infection by increasing the survival of Galleria mellonella larvae.


Extratos seco, fresco e glicólico de Zingiber officinale foram obtidos para avaliar suas ações por meio de ensaio de sobrevivência em G. mellonella contra infecção por Enterococcus faecalis. Oitenta larvas foram divididas em: 1) Suspensão de E. faecalis (controle); 2) E. faecalis + extrato fresco de Z. officinale (FEO); 3) E. faecalis + extrato seco de Z. officinale (DEO); 4) E. faecalis + extrato glicólico de Z. officinale (GEO); 5) Solução tampão fosfato salina (PBS). Para o grupo de controle, 5 µL de inóculo de suspensão padronizada (107 células/mL) de E. faecalis (ATCC 29212) foi injetado na última proleg esquerda de cada lagarta. Para os grupos com tratamento, após a injeção de E. faecalis, os extratos foram injetados na última proleg direita. Após as injeções, as lagartas foram armazenadas a 37 °C e o número de animais mortos foi registrado diariamente em 168 h (7 dias) para analisar a curva de sobrevivência. As lagartas foram consideradas mortas quando elas não mostraram qualquer movimento após o toque. A infecção por E. faecalis levou à morte de 85% das lagartas após 168 h. Não obstante, nos grupos de tratamento com associação dos extratos, houve um aumento nas taxas de sobrevivência de 50% (GEO), 61% (FEO) e 66% (DEO) das lagartas. Em todos os grupos com tratamento, as lagartas apresentaram um aumento na sobrevivência, com diferença estatisticamente significativa em relação ao grupo controle (p=0,0029). Não houve diferença estatisticamente significativa entre os tratamentos com os diferentes extratos (p=0,3859). Pode concluir-se que os extratos testados mostraram atividade antimicrobiana contra a infecção por E. faecalis, aumentando a sobrevivência das lagartas de G. mellonella.


Subject(s)
Humans , Receptors, GABA-A/chemistry , Binding Sites , Benzamidines/chemistry , Benzamidines/metabolism , Benzamidines/pharmacology , Conserved Sequence , Crystallography, X-Ray , Cell Membrane/chemistry , Cell Membrane/metabolism , Drug Design , GABA-A Receptor Agonists/chemistry , GABA-A Receptor Agonists/metabolism , GABA-A Receptor Agonists/pharmacology , Genetic Predisposition to Disease , Glycosylation , Models, Molecular , Mutation/genetics , Protein Structure, Quaternary , Protein Structure, Tertiary , Protein Subunits , Polysaccharides/chemistry , Polysaccharides/metabolism , Receptors, GABA-A/genetics , Synaptic Transmission
2.
Indian J Biochem Biophys ; 2007 Apr; 44(2): 114-21
Article in English | IMSEAR | ID: sea-27424

ABSTRACT

The present QSAR study has attempted to explore the structural and physicochemical requirements of ligands N,N-dialkyl-2-phenylindol-3-yl-glyoxylamides for binding with peripheral benzodiazepine receptor (PBR). The calculated partition coefficient values show parabolic relations with the PBR binding affinity, suggesting that the binding affinity increases with increase in the partition coefficient of the compounds until it reaches the critical value after which the affinity decreases. The critical value of logP is within range of 6.052-6.410. Furthermore, positive Wang-Ford.charge values of carbonyl oxygens of the glyoxamide moiety and negative Wang-Ford charge value of the glyoxamide nitrogen are conducive for the binding affinity. Again, the indole moiety should have favorable charge distribution. Higher values of the parameters dipole moment (Dipole) and moment of inertia (I_z) of the ligands are conducive for the binding affinity. The presence of hydrogen atom at R2 and cyclic moiety at R1 and R2 positions are detrimental to the binding affinity.


Subject(s)
Amides/chemistry , Binding Sites , Glyoxylates/chemistry , Indoles/chemistry , Models, Molecular , Quantitative Structure-Activity Relationship , Receptors, GABA-A/chemistry
3.
Indian J Biochem Biophys ; 2006 Apr; 43(2): 105-18
Article in English | IMSEAR | ID: sea-28931

ABSTRACT

Considering the potential of peripheral benzodiazepine receptor (PBR) ligands in therapeutic applications and clinical benefit in the management of a large spectrum of different indications, quantitative structure-activity relationship (QSAR) study has been attempted to explore the structural and physicochemical requirements for selectivity of 2-phenylimidazo[1,2-a]pyridineacetamides for binding with peripheral over central benzodiazepine receptors (CBRs). For PBR binding affinity, molar refractivity (MR) shows a parabolic relation with binding affinity suggesting that binding affinity increases with increase in volume of the compounds, until it reaches the critical value, after which the affinity decreases. The negative coefficients of S_aaN and S_ssNH indicate that binding affinity increases with decrease in E-state value of (N/) (aromatic nitrogen) and HN< (secondary amino group) fragments. The coefficient of 3XVC and JX term indicates the importance of shape and branching for binding affinity. For CBR binding affinity, lipophilicity of molecules is detrimental to the binding affinity, while presence of hydrogen at Y position is conducive to the activity. Selectivity pattern of these ligands for peripheral (cortex) over central receptors requires the presence and absence of methyl group at R2 and R3 positions respectively, and shows the importance of MR and shape parameter. Similarly, selectivity of these ligands for peripheral (ovary) over central receptors requires the presence and absence of methyl group at R2 and R3 positions respectively, presence of phenyl group at R1 and R2 positions and selectivity relation shows importance of MR, shape and branching.


Subject(s)
Acetamides/chemistry , Imidazoles/chemistry , Models, Chemical , Pyridines/chemistry , Quantitative Structure-Activity Relationship , Receptors, GABA-A/chemistry
4.
Indian J Biochem Biophys ; 1993 Jun; 30(3): 181-6
Article in English | IMSEAR | ID: sea-27332

ABSTRACT

With a view to providing perfection to the benzodiazepine receptor model proposed earlier [S P Gupta, R N Saha & V Mulchandani (1992) J. Mol. Recog, 5, 75-80] a few more QSAR studies on a series of 9-benzylpurines and tetracyclic 1,4-benzodiazepine derivatives have been made. The models showing the interaction of these compounds with the receptor are proposed. It is found that the receptor model, unlike the one proposed earlier, requires the presence of a polar site along with all the other essential sites.


Subject(s)
Benzodiazepines/metabolism , Binding Sites , Binding, Competitive , Diazepam/metabolism , Kinetics , Molecular Structure , Protein Conformation , Receptors, GABA-A/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL